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sure dependences of the individual elastic constants 
involved in this study. In order to do this we use 
Eq. (3). 

In order to determine the elastic constants it is 
necessary to determine the dimensional changes 
of the sample as a function of pressure. If enough 
modes are measured to determine a complete set 
of elastic constants, it is possible by using standard 
methods to determine the dimensional changes and 
the elastic constant changes (as a function of pres­
sure) simultaneously and self-consistently. If such 
a complete set of modes is not measured, then it 
is either necessary to have independent data for 
the dimenSional changes (axial compressions as a 
function of pressure), or to devise some approxi­
mation for these changes. In the present work the 
changes in the elastic constants of the anomalous 
shear modes are small, and it is therefore desir­
able to have reasonably accurate knowledge of the 
dimenSional changes. These changes were deter­
mined by different techniques for the different 
materials studied. 

For KDP, data are available from the work of 
Morosin and Samara29 for the axial compressions 
at high pressure. These authors determined 
volume vs pressure up to 20 kbar and the ci a 
ratio up to 3 kbar. To determine the a- and c­
axis dimensions to 20 kbar we employed a linear 
extrapolation of the ci a ratio to this pressure. 
This extrapolation should be a reasonable approxi­
mation, as the ci a ratio does not change by a 
large amount. 

For dKDP and RbDP compression data to 20 
kbar are not available, and a complete set of 
acoustic modes was not measured at high pressure, 
so it is necessary to apprOximate the high-pres­
sure axial compressions. This was done by as­
suming that the axial compressibilities are con­
stant as a function of pressure. The values of the 
axial compressibilities actually used are given in 
Table I. It is estimated that the constant com­
pressibility assumption may introduce errors in 
the axial compressions of around 1% at 20 kbar. 

For ADP a complete set of six acoustic modes 
was measured, allowing the axial compressions 
and elastic constants to be determined self-con­
sistently at high pressure. The procedure 
used for this calculation is a modification of the 
method of CooksO and is exactly the same procedure 
as was used previously in a study of the high­
pressure elastic properties of rutile. 16 

A minor complication arises in the analysis of 
the data because of the fact that the KDP-type 
crystals are piezoelectric. Two kinds of effects 
may arise in this area. The first is that certain 
modes may exhibit "piezoelectric stiffening" if 
they are mixed acoustic-electromagnetic modes 
with a component of electric field parallel to the 

propagation direction. Sl The second effect was 
briefly alluded to in the discussion of Eq. (1), 
namely, that if a strain component is piezoelec­
trically coupled to an electric-field component, 
then the stress-strain relations involving that 
particular strain component will depend on the 
electrical boundary conditions. 28 In particular, 
for the crystals under consideration, differences 
are expected for c~ and C[6 and similarly for 
C~ and C~. In our analysis we have considered 
only the piezoelectric effects described by Eq. 
(1); the other effects are generally small, and 
their evaluation is beyond the s cope of the present 
investigation. 

The effect described by Eq. (1) is important in 
the low-temperature ferroelectric phase transitions 
of the KDP-type materials, andhasbeenextensively 
studied in recent years. 32 The ferroelectric transi­
tions are accompanied by an anomaly in X~3' and this 
anomaly drives Ct6 to zero, triggering the transition. 
For the purposes of the present work it should be noted 
that X:s is fairly large at room temperature, 
especially for dKDP, oecause of the proximity of 
the ferroelectric transition. Applying pressure 
at room temperature moves the system away from 
the transition causing X:s to decrease significantly 
with increasing pressure. Although the difference 
cis - cfs is quite small at room temperature (viz., 
Table n) it is possible that some of the nonlinearity 
in the data of Figs. 1-4 could be accounted for by 
this effect. It was therefore decided that an at­
tempt should be made to determine the pressure 
dependence of the "normal" elastic constant Cfs. 
In order to do this the pressure dependences of 
X:3 and aS6 must be determined. Dielectric mea­
surements at high pressure on KDP-type materials 
have been made by Samara,S3 but very little is 
known about the pressure dependences of the piezo­
electric coefficients. For KDP the pressure de­
pendence of aS6 up to 4 kbar has been determined 
by combining the results of high-pressure and low­
temperature ultrasonic and dielectric measure­
ments. 34 An extrapolation of these results to 
high pressure (20 kbar) is obviously crude, but 
it does allow a reasonably good estimate of Cfs 
to be made at high pressure. An even cruder 
assumption was made for the case of dKDP, name­
ly, that the logarithmic pressure derivative of a S6 

is the same for dKDP and for KDP. No attempt 
was made to determine cia for RbDP or ADP. 

IV. DISCUSSION 

The results for the pressure dependences of the 
elastic constants of the four materials as obtained 
from the analysis dis<:uss~ above are shown as 
solid lines in Figs. 1-3 and 5. The main feature 
of these figures is the pronounced nonlinear be­
havior of C44 and C66" In Figs . 1 and 2 slight dif-
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FIG. 5. Reduced elastic constants of ADP vs pressure. 

ferences in the pressure dependences of C~ and 
~ can be seen; however, cte does exhibit a 
strongly nonlinear pressure dependence, illustrat­
ing that the curvature in the repetition rate data 
is not caused solely by the nonlinear dependence 
of the dielectric constant. The pressure deriva­
tives of the various elastic constants evaluated at 
atmospheric pressure are listed in Table lli. 

One feature of the results which requires 
special comment is the pressure dependence of 
C12 in ADP. This constant increases by about 80% 
in 9 kbar, but this large fractional change is due 
to the atmospheric pressure value being small 
(refer to Table II) rather than to a large pressure 
derivative (refer to Table m). 

The decrease of the C44 and C66 elastic constants 
with increaSing pressure reported here shows that 
the crystal lattices become progressively less 
stable with respect to the corresponding static 
shear displacements as pressure increases. Sim­
ilar behavior has been reported in the literature 
for the pressure dependences of shear modes of a 
variety of crystals, including a number of alkali 
halides (KF,3 KCI, 4 KBr, 5 KI,3,6 RbF,7 RbCI, 7-9 
RbBr, 7.9 and7•9 RJ:>I), SrO, 10 BaF2, 11.12 CdS,13 and 
ZnS,14 Ti02, 15.16 Cu20, 17 CuCI,8 and Te02.19 If a 
shear mode velocity could be driven to zero by in­
creasing the pressure to a certain value, then 
this mode would be a so-called "soft mode," and 

a structural phase transition would occur in which 
a static strain distortion (having the same sym­
metry as the soft mode) is the order parameter. 

Unfortunately, the Te02 transition19 is the 
only known example of a simple soft mode, 
pressure-induced structural transition. For the 
other materials mentioned above the situation is 
more complicated. In general the tranSitions are 
of first order, and the total elastic softening is 
'quite small, generally only a few percent. In these 
,"instances the stability of the lattice must be con­
sidered as being determined by the general thermo-=' 
dynamiC stability requirement (minimization of 
Gibbs free energy) rather than by such a Simple 
criterion as, say, the Born criterion. 14 Even in 
the case of a transition where macroscopic strains 
are the only order parameters (1. e., a transition 
driven by a mechanical instability alone) it has 
been shown by Anderson and Blount'S that cubic 
terms generally occur in a power-series expansion 
of the free energy, thereby producing a first-order 
transition. Although these considerations show 
that the detailed nature of the pressure-induced 
transitions we are considering is quite complicated, 
there is nevertheless strong evidence that incipient 
mechanical instabilities play an important role in 
these transitions. This point has been already 
emphasized in the literature. 12.14 

Attempts to correlate the anomalous acoustic­
mode behavior in the KDP-type crystals with pres­
sure-induced tranSitions are hampered on the one 
hand by the consideration just discussed above and 
on the other hand by a lack of detailed infprmation 
about the transitions themselves. Nevertheless it 
appears from the information available that the 
anomalous acoustic modes are, in fact, in some 
way associated with the pressure-induced phase 
transitions. Unfortunately, the pressures at 
which the Cu and C86 modes extrapolate to zero 
are well outside our high-pressure capabilities. 
To determine these extrapolated pressures, para"" 
bolic fits to the high-pressure elastic-constant 
data (Figs. 1-3 and 5) of the form 

TABLE ill. Pressure derivatives of the elastic con­
stants evaluated at p =1 atm and T=23 °C. 

KDP dKDP RbDP ADP 
dCjj/dp dC,/dp dCjj/dp dCjj/dp 

CII 16.4 ±0.S IS. 1 ±O.S lS.4±0.S 16.4 ± 0.S 

£;3 9.6 ±0.2 8. 8±0. 2 8. 9±0. 2 8.2±0.2 

c •• O. 74±0. 04 0.6,7 ±O. 04 0.22 ±O. 04 -0.24 ±0.O4 

~, 0.12 ± O. 03 0.18 ±O. 03 -0. 09±O. 03 0.07 ±O. 03 

" 
0.07 ± O. 04 0.02 ±O. 08 

Cn 2.7 ±O. 7 
CII 3.3±0.S 


